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Società Italiana di Fisica
Springer-Verlag 2000

Quantum master equation, Lindblad-type of dissipation
and temperature dependent Monte Carlo wave-function
propagation

O. Lindena and V. May

Institut für Physik, Humboldt-Universität zu Berlin, Hausvogteiplatz 5-7, 10117 Berlin, Germany

Received 13 February 2000 and Received in final form 28 April 2000

Abstract. So-called quantum-trajectory techniques have been introduced to reveal single-quantum system
dynamics contained in the average ensemble description. Main application could be addressed to quan-
tum optics of single atoms where one usually starts with the Lindblad-type of density matrix equations.
Here, emphasis is put on the dissipative dynamics of molecular systems. The derivation of a temperature-
dependent quantum-trajectory technique is presented starting from the widely used quantum master equa-
tion (QME) for the reduced density operator. Different applications of the resulting Monte Carlo wave-
function (MCWF) method being valid for molecular systems are given.

PACS. 05.30.Ch Quantum ensemble theory – 82.20.Fd Stochastic and trajectory models,
other theories and models

1 Introduction

In the late eighties experimental data became accessible
on the interaction of single atoms with the radiation field.
These measurements highlighted the importance of quan-
tum jumps, i.e. electronic transitions which proceed in-
stantaneously on the time-scale of the particular exper-
iment. Such transitions are originated by the coupling
of the atomic electronic levels to the reservoir of the
radiation-field modes. The quantum-trajectory methods
have been introduced as the theoretical framework to de-
scribe such a behavior of a single open quantum system
[1–5] (for a recent review see also [6]).

The general picture for the related reduced-system dy-
namics is the assumption that the coupling to the environ-
ment leads to interruptions of the coherent motion. The
latter is described by a Schrödinger-like wave equation
whereas the quantum jumps representing instantaneous
deviations from the coherent motion have to be intro-
duced by additional assumptions. The concept of quan-
tum jumps has been elaborated in [1,2,4,5] and is known
as the Monte Carlo wavefunction (MCWF) method. The
idea of the quantum state diffusion model differing in some
respects from the MCWF method has been first proposed
in [3]. A common approach based on a probability dis-
tributions on a projective Hilbert space is given in [7–9].
But independently of the specific features of the single-
quantum system dynamics and its description the ensem-
ble average should result in well-established equations of
motion for the related reduced density operator ρ̂(t).
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One can also take the point of view that the MCWF-
method represents an alternative and sometimes more ef-
ficient technique to determine ρ̂(t) as proceeding with a
direct integration of the QME. Since the numerical effort
necessary for the time-propagation of ρ̂(t) is proportional
to N2, where N denotes the dimension of the respective
state space, the usage of quantum-trajectory techniques
seems advisable for problems defined in a large state-space
or characterized by a larger number of degrees of free-
dom. Because in quantum-trajectory techniques the re-
duced system density operator is constructed by averaging
over various effective wave-functions |Ψ(t)〉 the numerical
effort for the propagation in time of one effective wave-
function is proportional to N only. (Clearly, the resulting
numerical efficiency depends essentially on the number of
wavefunctions one needs to achieve good statistics.)

All quantum-trajectory techniques make use of the
Lindblad-form of dissipation [10], which has been origi-
nally introduced to guarantee the positivity of the den-
sity matrix (for a first attempt to find a generalization
see [11]). The dissipative part of the density operator equa-
tion can be abbreviated by the Lindblad-type of superop-
erator DL and is usually written in the following form

−DL ρ̂(t) = −
∑
A

{1
2

(
LAL

+
A, ρ̂

)
+
− L+

Aρ̂LA
}
. (1)

It has to be specified separately in which manner the
Lindblad-operators L+

A and LA act and what the meaning
of the labels A is. Based on this type of dissipative su-
peroperator one determines a bundle of N different time-
dependent wave-functions (state vectors) |Ψη(t)〉 which are
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generated in a consistent manner with certain rules. Then,
the statistical operator reduced to a selected number of
atomic or molecular degrees of freedom is constructed ac-
cording to

ρ̂(t) = lim
N→∞

N∑
η=1

1
N
|Ψη(t)〉〈Ψη(t)|. (2)

This assumes that the reduced statistical operator ρ̂ de-
scribes a mixed state built up by pure-state contributions
|Ψη〉. However, ρ̂ is a result of a reduction-procedure onto
the small number of degrees of freedom of the consid-
ered quantum system. This is achieved via a trace with
respect to the environmental states, i.e. we set ρ̂(t) =
trR{Ŵ (t)}. Usually, the statistical operator of the com-
mon large system (small active system plus environment)
is understood as describing a mixed state according to
Ŵ (t) =

∑
nwn|Ψn(t)〉〈Ψn(t)|. Hence, it is a particular hy-

pothesis to provide the structure given in equation (2) for
the reduced statistical operator.

Accepting this hypothesis one works within the
MCWF-method, on which will we concentrate in the fol-
lowing, time-step δt by time-step δt (see [2]). If one starts
with |Ψ(t)〉 at time t one determines the change of the state
vector linear in δt. For this reason the anti-Hermitian con-
tribution ∆H = −i~

∑
ALAL

+
A/2 is added to the Hamil-

tonian HS. We get a state vector at time t + δt which is
not normalized

|Ψ̃(t+ δt)〉 =
(

1− i
~

(HS +∆H)δt
)
|Ψ(t)〉. (3)

The reduction δN of the proper normalization (linear in
δt) reads

δN =
2i
~
〈Ψ(t)|∆H|Ψ(t)〉δt

≡
∑
A

δNA =
∑
A

〈Ψ(t)|LAL+
A|Ψ(t)〉δt. (4)

Choosing a random number ε between zero and one we
introduce a so-called quantum jump if ε < δN . (Since δN
is a small number the quantum jump is a relatively rare
event.) Otherwise the state vector obtained according to
equation (3) is normalized only, and we set at time t+ δt

|Ψ(t+ δt)〉 =
1√

1− δN
|Ψ̃(t+ δt)〉. (5)

But if a quantum jump has to be carried out we write

|Ψ(t+ δt)〉 =
1√

δNA/δt
L+
A|Ψ(t)〉. (6)

Which operator L+
A has to be used is decided in propor-

tion to the probability distribution δNA/δN . According
to the randomness of this procedure one may generate
different state vectors |Ψη(t)〉. Then, the density matrix
can be constructed according to equation (2).

Meanwhile different generalizations of the original
stochastic wavefunction methods have been undertaken,

aimed to propagate nonlinear density matrix equa-
tions [12], to include non-Markovian effects [11,13–15],
and to simulate so-called pure dephasing processes [16].
Although these approaches seems to be very appealing it
has already been underlined in the original paper [2] that
it is not yet clear whether or not the single wave func-
tion |Ψη(t)〉 describes the stochastic dynamics of a single
quantum system. One reason for this uncertainty would
be the fact that the Lindblad-type of dissipation in its
original version has been introduced in using a general
reasoning (semigroup approach) instead of a microscopic
model for the interaction with a certain environment. Con-
sequently, any temperature dependence of the Lindblad-
operators L+

A is absent. Indeed, the derivations below are
aimed to demonstrate that this should be not necessarily
the case. Consequently, the given approach specifies ear-
lier treatments of atoms interacting with the quantized
radiation field [17,18].

In contrast, the standard equation of motion for ρ̂(t)
(the QME) is based on a microscopic model for the cou-
pling of the considered quantum system to a reservoir and
describes dissipation via thermal equilibrium reservoir cor-
relation functions (see for example [19–21]). This approach
is a standard tool in theoretical chemical physics and the-
oretical chemistry [22], but experienced a renaissance in
the last decade in connection with the description of sub-
picosecond phenomena in molecules (so-called femtochem-
istry, see [23]). It exists a less amount of work concern-
ing the application of stochastic wavefunction methods to
molecular systems [24–26]. And, apart from the observa-
tion of single-atom dynamics in a cavity meanwhile one is
also able to spectroscopically characterize single molecules
(see e.g. [27]).

It is the aim of the present paper to promote the use
of the MCWF-method to study molecular systems in the
condensed phase. A prerequisite to do this is to have a mi-
croscopically founded dissipative superoperator at hand.
It should include the temperature of the reservoir and
should be of the Lindblad-type, equation (1). Here, we
will follow the idea of [28] to derive a type of dissipa-
tive superoperator which is indeed of the Lindblad-type
and originates from a microscopic coupling model, too. A
derivation based on probability distributions on a projec-
tive Hilbert space has been given recently [7–9]. In con-
trast, it is the particular intention of the present contribu-
tion to bridge the gap between standard QME approaches
to molecular systems, on the one side, and temperature de-
pendent Lindblad-types of dissipation and MCWF prop-
agation techniques for molecular degrees of freedoms, on
the other side.

To do this we start in Section 2 with the well estab-
lished QME [19–22] and carry out a certain averaging
procedure. From this it becomes possible to deduce micro-
scopically founded and temperature dependent Lindblad-
operators in Section 3. This enables us to extend the
MCWF-method to finite temperatures for any type of
system (beyond the harmonic oscillator which has been
treated in [2,24,25]). The application of the state rep-
resentation is compared with the use of the coordinate
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representation. Different examples, among them electron
and exciton transfer in molecular systems, are considered
in Section 4.

2 The quantum master equation

Considering an open quantum system one is usually faced
with the problem to describe a comparable small set of
active degrees of freedom (the relevant system S with
Hamiltonian HS) which interacts with a macroscopic en-
vironment (the reservoir R with Hamiltonian HR). If the
measurements of interest only concern observables exclu-
sively defined in the state space of the active system S
one can reduce the whole description to the determination
of the reduced statistical operator ρ̂(t). The Nakajima-
Zwanzig equation includes a retarded interaction between
the active system and reservoir (time convolution between
the memory kernel and ρ̂) and establishes an exact frame-
work to determine ρ̂(t) (see e.g. [20–22], the convolution-
less alternative is shortly mentioned in Appendix B).

For most applications it suffices to take the coupling
between the active system and the reservoir as

HS−R =
∑
u

KuΦu. (7)

The system part Ku acts in the state-space of system de-
grees of freedom (DOF) whereas the reservoir part Φu is
defined in the state-space of reservoir DOF. Every term
KuΦu of the system-reservoir coupling is not necessarily
a Hermitian operator, but the complete coupling Hamil-
tonian HS−R is Hermitian.

In cases where the system-reservoir coupling is not too
strong one can reduce the exact equation of motion for
ρ̂ to an equation resulting from a second order pertur-
bation theory (second Born-approximation). The result is
the widely used QME. It reads in the interaction repre-
sentation

∂

∂t
ρ̂(I)(t) = − 1

~2

∑
u,v

∞∫
0

dτ

×
{
Cuv(τ)

(
Ku(t),Kv(t− τ)ρ̂(I)(t)

)
−

− Cvu(−τ)
(
Ku(t), ρ̂(I)(t)Kv(t− τ)

)
−

}
. (8)

The appearance of ρ̂(I)(t) instead of ρ̂(I)(t − τ) indicates
the application of the Markov approximation. (The use
of the upper bound of the integral at t = ∞ expresses
that the initial time has been put to −∞.) Resulting from
the action of time-evolution operator exp−iHSt/~ the op-
erators Kv are time-dependent. The reservoir correlation
function reads

Cuv(t) = trR{R̂eqΦu(t)Φv}, (9)

with time-dependent Φu defined via the time-evolution
operator given by the reservoir Hamiltonian HR. The

quantity R̂eq denotes the equilibrium statistical operator
of the reservoir. Note, that the structure of the correla-
tion function as well as the form of equation (8) provides
trR{R̂eqΦu} = 0. (Otherwise, Cuv(t) has to be generalized
by subtracting its factorized part, and one has to include
the so-called mean-field term into the QME [22].)

For the following it is useful to introduce the half-sided
Fourier transformation of the correlation function

Ĉuv(ω) =

∞∫
0

dτ eiωτ Cuv(τ) = −
∫

dω̄
2πi

Cuv(ω̄)
ω − ω̄ + iε

(10)

where the completely Fourier transformed correlation
function has been denoted by Cuv(ω).

To have an example for the correlation function at
hand we specify the reservoir part Φu of the system reser-
voir coupling, equation (7) somewhat. In the spirit of a
power expansion with respect to the reservoir coordinates
Zξ we set

Φu =
∑
ξ

~gξ(u)Zξ. (11)

Additionally, we consider the reservoir as a large set of in-
dependent harmonic oscillators. Than, as it is well-known,
all reservoir properties can be deduced from the spectral
density (coupling strength weighted density of states)

Juv(ω) =
∑
ξ

gξ(u)gξ(v)δ(ω − ωξ), (12)

where the ωξ give the oscillator frequencies. Using the
spectral density the Fourier transformed correlation func-
tion can be expressed as (n(ω) denotes the Bose-Einstein
distribution)

Cuv(ω) = 2π~2
(

1 + n(ω)
)(
Juv(ω)− Juv(−ω)

)
. (13)

To derive the Lindblad-type of dissipation from the QME
we will take equation (8) formulated in the interaction
representation as the starting point. For the presentation
of the standard QME in the Schrödinger representation
we refer to Appendix A.

2.1 Time-averaging procedure

It is well-known that the standard QME as given in Ap-
pendix A may violate the positivity of the density matrix.
But it has been already proposed by Davies in [28] how to
overcome this defect. Below we will follow this approach to
get a type of dissipative superoperator which guarantees
the positivity of ρ̂(t) by just becoming a superoperator of
the Lindblad-type.

The approach is based on the idea to average the den-
sity matrix equation with respect to unimportant fast os-
cillations. The derivation appears as the operator version
of the well-known secular approximation (see e.g. [19,22]).
To carry out the averaging we go back to the interaction
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representation, equation (8) where the time-dependence
of the density matrix is only determined by the dissipa-
tive part of the original QME. Now, it is easy to average
out any oscillation of the dissipative part. Therefore, the
right-hand side of equation (8) is expanded with respect
to the system Hamiltonian eigenstate |α〉, |β〉, etc. The
related eigenvalues are denoted as Eα, and Eβ with tran-
sition frequencies ωαβ = (Eα −Eβ)/~. One obtains

∂

∂t
ρ̂(I)(t) =− 1

~2

∑
u,v

∑
α,β,γ,δ

∞∫
0

dτe−iωγδτ

× exp
(
i(ωαβ + ωγδ)(t− t0)

)
K

(u)
αβK

(v)
γδ

×
(
Cuv(τ)|α〉〈β| × |γ〉〈δ|ρ̂(I)(t)

+ Cvu(−τ)ρ̂(I)(t)|γ〉〈δ| × |α〉〈β|
− Cuv(τ)|γ〉〈δ|ρ̂(I)(t)|α〉〈β|

− Cvu(−τ)|α〉〈β|ρ̂(I)(t)|γ〉〈δ|
)
. (14)

The time-averaging only concerns the oscillating term
with frequency combination ωαβ + ωγδ. It leads to the
demand ωαβ +ωγδ = 0. Additionally, the first term on the
right-hand side of equation (14) requires β = γ and
the second term δ = α. To carry out the time-averaging
we suppose that the only way to solve ωαβ + ωγδ = 0 is
to set α = β and γ = δ, or α = δ and β = γ. This solu-
tion excludes spectra incorporating degenerated levels as
well as spectra with a unique distance between neighbor-
ing levels (harmonic oscillator). As a result, equation (14)
is reduced to

∂

∂t
ρ̂(I)(t) ≈− 1

~2

∑
u,v

∑
α,β

∞∫
0

dτ
{
K

(u)
αβK

(v)
βα eiωαβτ

×
(
Cuv(τ)|α〉〈α|ρ̂(I)(t)+Cvu(−τ)ρ̂(I)(t)|β〉〈β|

− Cuv(τ)|β〉〈α|ρ̂(I)(t)|α〉〈β|

− Cvu(−τ)|α〉〈β|ρ̂(I)(t)|β〉〈α|
)

−K(u)
ββ K

(v)
ααCuv(τ)|α〉〈α|ρ̂(I)(t)|β〉〈β|

−K(u)
ααK

(v)
ββCvu(−τ)|α〉〈α|ρ̂(I)(t)|β〉〈β|

)}
.

(15)

It is easy to go back to the Schrödinger representation.
Doing this one notices that the whole structure of the
dissipative part of the QME remains unchanged. It is only
necessary to replace ρ̂(I)(t) by ρ̂(t). To have a compact
notation we introduce

Γ̂α→β =
1
~2

∑
u,v

Ĉuv(ωαβ)K(u)
αβK

(v)
βα . (16)

This quantity can be understood as a generalized transi-
tion rate. It enables us to abbreviate the first two terms
on the right-hand side of equation (15). Ĉ(ω) denotes the

half-sided Fourier transformation of the correlation func-
tion and has already been introduced in equation (10). If
Ĉ(ω) is replaced by C(ω) we will write Γα→β instead of
Γ̂α→β . One can verify that

Γα→β = Γ̂α→β + Γ̂ ∗α→β , (17)

demonstrating that Γα→β is a real quantity. It comprises
the third and fourth term on the right-hand side of equa-
tion (15). To abbreviate the remaining two terms we in-
troduce

Γ̃αβ =
1
~2 (1− δα,β)

∑
u,v

Cuv(ω = 0)K(u)
ββ K

(v)
αα . (18)

Before further proceeding this last expression needs a
short comment. A detailed inspection of the respective
contribution to equation (15) shows that it violates prob-
ability conservation, i.e. it results in

∑
α ∂ραα/∂t 6=

0. Therefore, the Markov-approximation and the time-
averaging procedure ask for a careful discussion whenever
applied to those parts of Dρ̂ leading to equation (18). For
the present applications and as it has already be done in
equation (18) we neglect the diagonal contributions.

The complete dissipative part of the QME will be sym-
bolized by the action of the time-averaged dissipative su-
peroperator according to

−Dρ̂(t) =

−
∑
α

(∑
β

Γ̂α→β |α〉〈α|ρ̂(t) + ρ̂(t)
∑
β

Γ̂ ∗α→β |α〉〈α|
)

+
∑
α,β

Γα→β |β〉〈α|ρ̂(t)|α〉〈β|+
∑
α,β

Γ̃αβ |α〉〈α|ρ̂(t)|β〉〈β|.

(19)

To get a deeper insight into the derived structure we will
give a short interpretation of the various terms. We start
with the term proportional to Γα→β , which comprises, left
and right from ρ̂, transitions from the states |α〉 to the
states |β〉. This becomes somewhat more concrete if we
use expression (13) for the correlation function which is
valid if the coupling to the reservoir is linear with respect
to the reservoir coordinates. The transition rate reads

Γα→β = 2π
∑
u,v

K
(u)
αβK

(v)
βα

×
((

1 + n(ωαβ)
)
Juv(ωαβ) + n(ωβα)Juv(ωβα)

)
. (20)

It represents the standard rate expression for energy re-
laxation. The transition processes proceed from level α
to lower-lying levels (proportional to 1 + n(ωαβ)) and to
higher-lying levels (proportional to n(ωβα)). Next we con-
centrate on the terms proportional to Γ̂α→β . They form a
non-Hermitian extension ∆H of the system Hamiltonian
which can be written as

∆H = −i~
∑
α,β

Γ̂α→β |α〉〈α|. (21)
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Taking this definition the complete dissipative part, equa-
tion (19) reads

−Dρ̂(t) = − i
~

(
∆Hρ̂(t)− ρ̂(t)∆H

+
)
−∆Dρ̂(t), (22)

where ∆Dρ̂ comprises the third and the fourth term in
equation (19). The latter are usually named sandwich
terms since they incorporate the simultaneous action on ρ̂
from the left and the right. In contrast those terms propor-
tional to Γ̃ describe scattering processes where no energy
exchange takes part (pure dephasing processes).

2.2 Energy representation

It is instructive to relate the result of the time-averaging
procedure to the well-known secular approximation [19,
22]. For this reason we present the energy (state) repre-
sentation of some formulas of the preceding section. It
enables us to write the energy representation of the non-
Hermitian Hamiltonian, equation (21) as

− i
~
〈α|∆H|β〉 = −δα,β

∑
γ

Γ̂α→γ , (23)

and the total dissipative part of the QME reads

− 〈α|Dρ̂(t)|β〉 = −
(∑

γ

Γ̂α→γ +
∑
γ

Γ̂ ∗β→γ

)
ραβ(t)

+ δα,βΓγ→αργγ(t) + Γ̃αβραβ(t). (24)

Next, we give a notation of this equation which contains
a complete ordering with respect to diagonal and off-
diagonal density matrix elements

− 〈α|Dρ̂(t)|β〉 =

− δα,β
(∑

γ

Γα→γραα(t)−
∑
γ

Γγ→αργγ(t)
)

− (1− δα,β)
(∑

γ

(Γ̂α→γ + Γ̂ ∗β→γ)− Γ̃αβ
)
ραβ(t). (25)

The diagonal part describes population redistribution ac-
cording to an ordinary rate equation. The decay of the
off-diagonal density matrix elements is governed by the
rates Γ̂ where the real part can be interpreted as a stan-
dard dephasing-rate.

The derived state representation of the dissipative part
of the QME, equation (25) coincides with the result ob-
tained from an approach based on the Redfield-tensor and
on the application of the secular approximation [29].

2.3 Pure dephasing contributions

Pure dephasing is characterized as the type of interaction
(scattering) process between the active system and the
reservoir which proceeds without energy exchange. There-
fore, those transition rates entering equation (25) may

contribute to pure dephasing rates for which the diagonal
parts (α → α) do not vanish. A closer inspection of the
part of equation (25) describing dephasing (off-diagonal
part) shows that besides Γ̃ also the two generalized rates
Γ̂ may contribute. Indeed, if the diagonal part of K(u)

αβ

exists Γ̂α→β , equation (16) contains a zero-frequency con-
tribution of the correlation function. We write

Γ̂α→β = δα,βΓ̂
(dia)
α + (1− δα,β)Γ̂ (od)

α→β . (26)

The first part together with Γ̃ gives the complete pure
dephasing rate

r
(pd)
αβ = (1− δα,β)

1
~2

∑
u,v

(
Ĉuv(ω = 0)K(u)

ααK
(v)
αα

+ Ĉ∗uv(ω = 0)K(u)
ββK

(v)
ββ − Cuv(ω = 0)K(u)

ββ K
(v)
αα

)
. (27)

It depends on the frequency dependence of the correlation
functions and, in particular, on the limit ω → 0 if pure
dephasing rates exist.

3 Lindblad-type of dissipation

After having discussed in detail the time-averaging proce-
dure of the QME and the obtained expressions we demon-
strate how to get the Lindblad-type of dissipation, equa-
tion (1). For this aim we need a common form of ∆H,
equation (21) and the remaining part −∆D. This form is
obtained if we replace Γ̂ by ReΓ̂ ≡ Γ/2 and neglect the
contribution proportional to Γ̃ . Therefore, we rearrange
equation (19) according to

−Dρ̂(t) = −DLρ̂(t)−Dnon−Lρ̂(t). (28)

The first contribution can be written in the Lindblad-form
as will be demonstrated below. The second non-Lindblad
type reads

−Dnon−Lρ̂(t) = −
∑
α,β

i ImΓ̂α→β |α〉〈α|ρ̂(t)

+ ρ̂(t)
∑
α,β

i ImΓ̂α→β |α〉〈α|+
∑
α,β

Γ̃αβ |α〉〈α|ρ̂(t)|β〉〈β|.

(29)

In the state representation this term exclusively deter-
mines off-diagonal density matrix elements and does not
disturb probability conservation. But the absence of the
Lindblad-structure avoids to apply the standard proce-
dure of the MCWF-method as explained in the introduc-
tion. A possible treatment of these terms together with the
pure-dephasing contribution has been proposed recently
in [16].

For the time being we will concentrate on the
Lindblad-type of dissipation which reads

−DLρ̂(t) = −
∑
α,β

{1
2

(
Γα→β |α〉〈α|, ρ̂(t)

)
+

− Γα→β |β〉〈α|ρ̂(t)|α〉〈β|
}
. (30)
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In order to demonstrate that this expression is identical
with the Lindblad-form, equation (1) we replace |α〉〈α| by
|α〉〈β| × |β〉〈α| and introduce the Lindblad-operator

L+
A =

√
Γα→β |β〉〈α| (31)

with the identification A = (α, β). Indeed, equation (1) is
reproduced (i) starting from a microscopic model for the
system-reservoir coupling, and (ii) including the temper-
ature of the reservoir.

To clearly underline the effect of finite temperature we
note equation (20). Furthermore, the assumption of a non-
degenerated and heterogeneous spectrum is used and the
transition rate can be split off according to

Γα→β = Γ
(down)
α→β + Γ

(up)
α→β . (32)

The first term on the right-hand side reads

Γ
(down)
α→β = 2π

∑
u,v

K
(u)
αβK

(v)
βα

(
1 + n(ωαβ)

)
Juv(ωαβ) (33)

and describes transitions proceeding downwards in the
spectrum. Upward transitions are incorporated in

Γ
(up)
α→β = 2π

∑
u,v

K
(u)
αβK

(v)
βαn(ωβα)Juv(ωβα). (34)

This allows to split off the Lindblad-operators according to

L+
α→β = Θ(ωαβ)

√
Γ

(down)
α→β |β〉〈α| +Θ(ωβα)

√
Γ

(up)
α→β |β〉〈α|.

(35)

It describes downwards and upwards transitions from the
reference level α. (The unit-step functions have only been
introduced to make the difference between the two terms
more obvious.)

3.1 The MCWF-method in the state representation

The considerations of the foregoing section are continued
in presenting respective formulas necessary to carry out
the MCWF-method in the state representation. We intro-
duce the expansion coefficient of the time-dependent state
vector generated within the MCWF-method

Cα(t) = 〈α|Ψ(t)〉. (36)

The state representation of equation (3) follows as

〈α|Ψ̃ (t+ δt)〉 ≡ C̃α(t+ δt) =
(

1− i
~
Eαδt

)
Cα(t)

− 1
2

∑
A

〈α|LAL+
A|Ψ(t)〉δt. (37)

If we calculate the state representation of the Lindblad-
operator term we get∑

A

〈α|LAL+
A|β〉 = δα,β

∑
γ

Γα→γ ≡ δα,β/τα. (38)

In the last part of this expression we identified the total
transition rate out off the state |α〉 by the inverse life-time
of this state. This enables us to write equation (37) in the
following form

C̃α(t+ δt) =
(

1−
(

i
~
Eα +

1
τα

)
δt

)
Cα(t). (39)

Accordingly, the change of the norm δN can be written as

δN = δt
∑
α

|Cα(t)|2
τα

≡
∑
A

δNA =
∑
α,β

|Cα(t)|2Γα→β δt. (40)

Here, we can identify δNA by δNαβ = |Cα(t)|2Γα→β δt.
The state representation of the quantum jumps, equa-

tion (6) from the initial state |β〉 to the final state |α〉
follows as

Cα(t+ δt) =

√
Γβ→αδt

δNβα
Cβ(t) ≡ Cβ(t)

|Cβ(t)| · (41)

The final state after the jump is the result of a random
choice as explained in Section 1, and it is not a superpo-
sition state but the state |α〉. This single state, however,
carries the phase of the initial state.

If no quantum jump takes place we have

Cα(t+ δt) = C̃α(t+ δt)/
√

1− δN . (42)

The mentioned procedure generates the expansion co-
efficients of the state vector for every instant of time
t ≡ tn = t0 + nδt. According to equation (2) the den-
sity matrix follows as

ραβ(t) =
N∑
η=1

1
N
C(η)∗
α (t)C(η)

β (t) . (43)

3.2 The MCWF-method in the coordinate
representation

It is instructive to proof whether or not the coordinate rep-
resentation offers some technical advantages compared to
the energy representation. The coordinate representation
is easily obtained from the state representation by intro-
ducing the completeness relation 1 =

∫
dx|x〉〈x| at those

parts of the derivation where it would be necessary. The
coordinate representation of the basis states is denoted as
〈x|α〉 = φα(x) whereas Ψ(x, t) has to be identified with
〈x|Ψ(t)〉. If quantum jumps are absent one gets

Ψ̃(x, t+ δt) = (1− i
~
HS)Ψ(x, t)δt

− i
~

∫
dy∆H(x, y)Ψ(y, t)δt. (44)
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The integral kernel reads

i
~
∆H(x, y) =

1
2
〈x|
∑
A

LAL
+
A|y〉

=
1
2

∑
α

φα(x)φ∗α(y)
1
τα
· (45)

The related changes of the norm can be obtained from

δNαβ =
∣∣∣∣∫ dxφ∗α(x)Ψ(x, t)

∣∣∣∣2 Γα→βδt. (46)

The quantum jump is generated according to

Ψ(x, t+ δt) = φα(x)

√
Γβ→αδt

δNβα

∫
dy φ∗β(y)Ψ(y, t)

≡ φα(x)

∫
dy φ∗β(y)Ψ(y, t)∣∣∣∣∫ dy φ∗β(y)Ψ(y, t)

∣∣∣∣ , (47)

where the procedure to chose the quantum number pair
(α, β) has been described in Section 1. If non quantum
jump takes place we get

Ψ(x, t+ δt) =
Ψ̃(x, t+ δt)√

1− δN
· (48)

The given formulas show that the use of the coordinate
representation does not circumvent the determination of
the wavefunctions φα(x) and the related transition fre-
quencies ωαβ of the spectrum. But under special condi-
tions it should be possible to approximate the integral ker-
nel, equation (45), in using some known basis functions.
In this way one may avoid the computation of the φα(x)
and ωαβ . For example, if one introduces a mean inverse
life-time 1/τ replacing the various 1/τα in equation (45),
the integral kernel becomes local, i.e. equal to δ(x−y)/2τ .
This approximate type of describing dissipation becomes
complete if the quantum jumps are carried out into known
functions φ̃(x) which approximate the correct eigenfunc-
tions. An alternative treatment has been suggested in [26],
where a special Lindblad-type of the dissipative term−Dρ̂
has been derived in using the coordinate representation.

4 Applications

In the remaining part of the paper we discuss differ-
ent examples for the application of the MCWF-method
with concentration on the field of molecular and chemical
physics.

4.1 Relaxation in multi-level system

Let us consider a molecular systems for which the eigen-
states Eα of the active part (with Hamiltonian HS) are

known. As a first example we mention the vibrational lev-
els belonging to a given (adiabatic) electronic state. The
respective vibrational Hamiltonian reads Hvib = T +U(q)
with the potential energy surface U(q) characterized by
the set q = {qj} of vibrational coordinates. If the eigen-
values of Hvib can be determined we have to identify α
from Eα as the set of vibrational quantum numbers. In
the most simple case where the potential energy surface
is defined by normal-mode oscillations α separates into
the set {Nj} of normal-mode harmonic oscillator quan-
tum numbers [22].

Multi-level systems are also found in connection with
the formation of Frenkel-excitons in dye aggregates or
chromophore complexes and in connection with electron
transferring system. The latter will be discussed in more
detail in the following section. For the case of intramolec-
ular excitation energy (Frenkel-exciton) transfer we give
the respective active system Hamiltonian [30]. Restricting
on the presence of a single excitation in the aggregate it
reads

Hex =
∑
m,n

(
δm,nEm + (1− δm,n)Jmn

)
|m〉〈n|. (49)

The Em describe the electronic excitation energy of
molecule m in the complex (usually related to the transi-
tion from the singlet ground-state to the first excited sin-
glet state S1). The Coulombic coupling (without charge
transfer) between different molecules m and n is denoted
by Jmn, and |m〉 gives the state where molecule m is ex-
cited whereas all remaining molecules are in the ground-
state. A diagonalization of Hex results in the (single) ex-
citon spectrum with energies Eα. This approach can be
generalized to the simultaneous presence of two or more
excitations in the complex resulting in two-exciton, three-
exciton etc. spectra. If charge transfer between the vari-
ous constituents of the complex becomes important the
concept of Frenkel-excitons looses its meaning and the
eigenenergies Eα corresponds to more or less delocalized
excited electronic state. This is typical for atomic clusters
or nanoparticles.

Having discussed such examples for the eigenstate |α〉
and eigenvalues Eα of the system Hamiltonian HS we
specify the coupling Hamiltonian HS−R, equation (7) in
providing that it reduces to a single term. This specifi-
cation removes all indices u and v from the formulas in-
troduced so far. We can directly overtake these general
expressions, but have to specify the relaxation rates, equa-
tion (20) to

Γα→β = 2π |Kαβ |2

×
((

1 + n(ωαβ)
)
J(ωαβ) + n(ωβα)J(ωβα)

)
. (50)

For concrete computations we can use all formulas given
in Section 3.1 or in Section 3.2 to carry out the MCWF
propagation. The generalization to a nonlinear system-
reservoir coupling is shortly discussed in Appendix C.
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4.2 Ultrafast electron transfer reactions

Investigating so-called ultrafast electron transfer which
usually proceeds on a sub-picosecond time-scale one is
confronted with a concerted electronic and nuclear mo-
tion, and as a result with the occurrence of electronic and
vibrational coherences. A possible treatment of such phe-
nomena can be achieved in an approach where the active
system is not only given by the electronic degrees of free-
dom but by some selected vibrational modes, too [31,32].
The remaining vibrational degrees of freedom are consid-
ered to form the thermal bath. If one takes the so-called
diabatic representation the respective molecular Hamilto-
nian is given by

Hmol =
∑
m,n

(
δm,nHm(q) + (1− δm,n)Vmn(q)

)
|ϕm〉〈ϕn|.

(51)

The |ϕm〉 denote the diabatic electronic states and cover
the donor level (m = D) the acceptor level (m = A) and
some bridging levels (m = B1, B2, ...) in between. Expres-
sion (51) contains the vibrational Hamiltonian belonging
to the various electronic states and Vmn is the electronic
state coupling. Both quantities depend on the set q of nu-
clear coordinates. The vibrational wavefunctions defined
as eigenstates of the vibrational Hamiltonian Hm are writ-
ten as |χmM〉 where M is the vibrational quantum num-
ber set. The coupling of the (active) coordinates q to other
reservoir degrees of freedom is taken in a diagonal form
with respect to the electronic quantum numbers. We write

HS−R =
∑
m

KmΦm, (52)

where the system part reads

Km = km(q)|ϕm〉〈ϕm|, (53)

and Φm is identical to the expression in equation (11), but
with u replaced by m.

Of course, the molecular Hamiltonian, equation (51)
can be diagonalized leading to the so-called adiabatic rep-
resentation. If one proceeds in such a manner one derives
a representation similar to that discussed in the foregoing
section (and all can be reproduced done so far). In many
cases, however, some residual nonadiabatic couplings re-
main, and again we would have a system which is not
diagonal. Therefore, to demonstrate how one has to gen-
eralize the formulas given in the foregoing section to the
case where one uses non-eigenstates of the system we will
take the diabatic representation. This can be additionally
motivated by a restriction to small transfer couplings Vmn
(small compared to typical vibrational quanta of the active
modes qj). In line with the assumption of small Vmn one
can concentrate on the description of dissipation which ex-
clusively proceeds in the diabatic states. (Whenever this
approximation becomes inadequate one should leave the
diabatic representation and describe the transfer process
by means of the adiabatic states.)

To achieve the Lindblad-form of the diabatic descrip-
tion of dissipation, i.e. relaxation in non-eigenstates one
has to change over from the general dissipative terms in
the QME to the time-averaged version Dρ̂, equation (19).
To do this we have to use in the dissipative terms the
time-evolution operator U (0)

S = exp(−iH(0)
S t/~) instead of

US = exp(−iHSt/~). Here, the zeroth-order Hamiltonian
reads H(0)

S =
∑
mHm(q). As a result we get the following

type of Lindblad-operators, equation (31)

L+
A =

√
ΓmM→nN |ϕm〉|χmM 〉〈χnN |〈ϕn|. (54)

Inserting the concrete form of the system-reservoir cou-
pling, equation (53) into equation (20) one obtains

ΓmM→nN = δm,n 2π|kmM,mN |2

×
((

1 + n(ωmM,mN)
)
Jmm(ωmM,mN)

+ n(ωmN,mM)Jmm(ωmN,mM)
)
. (55)

As expected the transition rates are diagonal with respect
to the diabatic electronic quantum numbers.

Next we present an expansion of the reduced density
operator in terms of electronic states

ρ̂mn(t) = 〈ϕm|ρ̂(t)|ϕn〉. (56)

This quantity is an operator in the state-space of the nu-
clear DOF. The QME follows as

∂

∂t
ρ̂mn(t) = − i

~
(
Hmρ̂mn(t)− ρ̂mn(t)Hn

)
− 〈ϕm|DLρ̂(t)|ϕn〉, (57)

where the electronic matrix element of the dissipative
part can be rewritten by introducing the newly defined
Lindblad operators

l+mM→mN =
√
ΓmM→mN |χmN 〉〈χmM |. (58)

These operators exclusively act in the state space of the
vibrational degrees of freedom and describe excitations
and deexcitations in the diabatic vibrational spectrum.
The electronic matrix element of the dissipative part reads

− 〈ϕm|DLρ̂(t)|ϕn〉 = −1
2

∑
M,N

lmM→mN l
+
mM→mN ρ̂mn(t)

− ρ̂mn(t)
1
2

∑
M,N

lnM→nN l
+
nM→nN

+ δm,n
∑
M,N

l+mM→mN ρ̂mm(t)lmM→mN . (59)

An initial condition for the reduced density operator
would be a thermal distribution versus the vibrational lev-
els of the donor state ϕD, i.e. we set

ρ̂mn(t0) = δm,nδm,D
exp−(HD/kBT )

trvib{exp−(HD/kBT )} · (60)
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HD is the donor vibrational Hamiltonian and trvib{...}
denotes the trace with respect to the vibrational DOF. (In
the case of photoinduced ultrafast ET, of course, one has
to consider the optical preparation process of the donor
state in detail.)

If we concentrate on the part of equation (59) being
diagonal with respect to the diabatic electronic quantum
numbers it is again of the Lindblad type. In contrast,
the sandwich terms disappear for the off-diagonal part.
Such a result is caused by the structure of the system
reservoir coupling, equation (53) diagonal with respect to
the diabatic electronic quantum numbers. Consequently,
the dissipative superoperator acts exclusively from the left
or from the right on ρ̂mn. The absence of the sandwich-
type term means that quantum jumps do not appear if
the MCWF-method is applied. This conclusion becomes
immediately obvious if one notices that quantum jumps
create the sandwich-type terms if one changes from the
MCWF-method to equation of motion for the density op-
erator equation (2) [2].

A considerable simplification is achieved if one fol-
lows [25], where spectral densities Jmm have been used
independent on the diabatic electronic quantum num-
bers. Furthermore, a harmonic oscillator model has been
adopted for the description of a single vibrational coor-
dinates q. Changing to a dimensionless vibrational co-
ordinate Q = C + C+, built up by oscillator annihi-
lation and creation operators C, and C+, respectively,
we can write the potential energy surfaces as Um(Q) =
U

(0)
m + ~ωvib(Q−Q(0)

m )2/4. The quantity Q(0)
m denotes the

actual displacement of the coordinate upon the presence of
the transferred electron at diabatic level m. Furthermore,
we set km(Q) = Q − Q(0)

m . This enables us to introduce
the following simplification

1
2

∑
M,N

lmM→mN l
+
mM→mN = πn(ωvib)J(ωvib)CC+

+ π
(
1 + n(ωvib)

)
J(ωvib)C+C. (61)

However, for the sandwich-type term we obtain the some-
what larger expression∑
M,N

l+mM→mN ρ̂mm(t)lmM→mN = 2π
∑
N

(
n(ωvib)J(ωvib)

× |χmN 〉〈χmN |C+ρ̂mm(t)C|χmN 〉〈χmN |
+
(
1 + n(ωvib)

)
J(ωvib)

× |χmN 〉〈χmN |Cρ̂mm(t)C+|χmN 〉〈χmN |
)
. (62)

The derived formulas have been used in [25] to describe ET
in a donor-acceptor complex with three accepting modes.

4.3 Linear optical absorption

Linear absorption is treated here to demonstrate how the
MCWF-method is modified if exclusively off-diagonal elec-
tronic contributions are considered. As it is well-known

the linear absorption coefficient α(ω) is determined by the
(half-sided) Fourier-transformed dipole-dipole correlation
function C

(−)
d−d(t). Neglecting inhomogeneous broadening,

introducing an orientational averaging and denoting the
volume density of molecular systems by nmol one obtains
(see e.g. [22])

α(ω) =
4πωnmol

3~c
Re

∞∫
0

dt eiωtC
(−)
d−d(t). (63)

If a molecular system embedded in a thermal environment
is considered and optical transitions (in the chosen fre-
quency range) exclusively proceed in the molecular system
the dipole-dipole correlation function can be transformed
into a reduced representation. In this reduced representa-
tion all environmental degrees of freedom have been re-
moved and the time-evolution is described by the dissipa-
tive dynamics of the reduced (active) system S. We get
the expression

C
(−)
d−d(t) = trS{µ̂ U(t)

(
µ̂, ρ̂eq

)
−}. (64)

Here, the time-evolution superoperator U(t) is of such a
type that it generates the correct solution of the QME.
The trace concerns the state-space of the active system
only, and the dipole operator has been denoted as µ̂. To-
gether with the equilibrium reduced density operator ρ̂eq

it defines the initial value of the dissipative time-evolution.
The given formula is useful whenever optical absorption
can be described via a direct propagation of a small set
of active degrees of freedom. Within this approach one
circumvents the determination of the active system eigen-
states what is advisable if, for example, the motion in a
non-bonding potential energy surface is considered (see
e.g. [33,34]).

We comment how the MCWF method works in this
case. To do this we describe the molecular system by
a two-state model with the electronic ground-state ϕg

and the excited state ϕe. The respective Hamiltonian is
given by

Hmol =
∑
a=g,e

Ha(q)|ϕa〉〈ϕa|. (65)

The Ha denote the related vibrational Hamiltonian de-
pending on the set q = {qj} of vibrational coordinates.
Furthermore, any diagonal element of the dipole operator
is neglected, and we have

µ̂ = deg|ϕe〉〈ϕg|+ h.c. (66)

In the sense of a Condon-approximation the vectorial tran-
sition dipole moment deg does not depend on the vibra-
tional coordinates. According to these specifications the
dipole-dipole correlation function, equation (64) can be
simplified in carrying out the electronic part of the trace.
It remains a trace with respect to the vibrational state-
space

C
(−)
d−d(t)=dgetrvib{〈ϕe|σ̂(t)|ϕg〉}+degtrvib{〈ϕg|σ̂(t)|ϕe〉},

(67)
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with

σ̂(t) = U(t)
(
µ̂, ρ̂eq

)
−. (68)

Obviously, one only has to propagate off-diagonal reduced
density operators. They have to be understood as gen-
eralizations of ρ̂eg and ρ̂ge (with the initial condition
σ̂(0) =

(
µ̂, ρ̂eq

)
−). To carry out the propagation we will

use the same coupling of the active coordinates qj to the
reservoir degrees of freedom as in the foregoing Section 4.2.
But here we have to understand equation (53) as a rela-
tion which concerns the two adiabatic levels ϕa instead of
diabatic levels as in the original relation.

According to equation (59) which is a direct con-
sequence of the state-diagonal coupling ansatz, equa-
tion (53) we obtain the dissipative part of the QME gov-
erning the dynamics of ρ̂eg as

−〈ϕe|DLρ̂|ϕg〉 = −1
2
(
γ̂eρ̂eg + ρ̂egγ̂e

)
. (69)

The newly introduced γ-operators read

γ̂a =
∑
M,N

ΓaM→aN |χaM 〉〈χaN |, (70)

and the transition rates are defined similar to those intro-
duced in equation (55), but related here to the adiabatic
electronic states. The M , N , ... label the set of vibrational
quantum numbers and χaM denotes the vibrational wave-
function of adiabatic electronic state a.

As already claimed in the foregoing section the
Lindblad-type of dissipation valid for the off-diagonal den-
sity operator is free of the sandwich term and any quantum
jump will be absent if changed to the MCWF method. As
a consequence of the absence of quantum jumps the norm
of the propagated wavefunction decreases. This conclusion
can be directly related to the fact that the off-diagonal
density operator ρ̂ab vanishes for t→∞. (In contrast, we
have trvib{ρ̂gg + ρ̂ee} = 1.)

The mentioned property offers an easy way to compute
the off-diagonal density operators. We note that the initial
value ρ̂eq = R

(g)
eq |ϕg〉〈ϕg| incorporates the thermal equilib-

rium statistical operator R(g)
eq with respect to the vibra-

tional states of the electronic ground-state (in similarity
to Eq. (60)). Taking the off-diagonal matrix elements of
equation (68) one obtains

〈ϕe|σ̂(t)|ϕg〉 = deg exp
{(
− i
~
He − γ̂e/2

)
t

}
R(g)

eq

× exp
{(

i
~
Hg − γ̂g/2

)
t

}
. (71)

The equilibrium statistical operator (of a mixed state)
R

(g)
eq contains the pure-state contributions |χgN 〉〈χgN | pro-

jecting on a particular vibrational state of the electronic
ground-state. These states are propagated from the left
with an effective Hamiltonian He − i~γ̂e/2 and from the
right with Hg + i~γ̂g/2. If one carries out the trace with

respect to the vibrational degrees of freedom via the states
χeN of the excited electronic states one obtains the corre-
lation function, equation (67) as

C
(−)
d−d(t) = |dge|2

×
∑
M,N

〈χeM | exp
{(
− i
~
EeM −

1
2τeM

)
t

}
|χgN 〉

× 〈χgN |f(EgN ) exp
{(

i
~
EgN −

1
2τgN

)
t

}
|χeM 〉. (72)

The part proportional 〈ϕg|σ̂(t)|ϕe〉 could be neglected
since it leads to non-resonant contributions in the absorp-
tion coefficient. Inverse vibrational state life-times have
been introduced in similarity to equation (38) as 1/τaM =∑
N ΓaM→aN , and we abbreviated 〈χgN |R(g)

eq |χgN 〉 by the
distribution function f(EgN ).

To be complete we present the final result for the
absorption coefficient. Therefore, we have to insert the
derived expression for the correlation function into equa-
tion (63)

α(ω) =
4πωnmol

3~c
|dge|2

∑
M,N

|〈χeM |χgN 〉|2f(EgN )

× 1/2τeM + 1/2τgN
(ω − (EeM −EgN )/~)2 + (1/2τeM + 1/2τgN)2 · (73)

A formula for the absorption coefficient has been obtained
built up by various contributions with a Lorentzian-like
line-shape.

4.4 Some generalizations

As already pointed out for linear absorption electronic
transitions (in molecular systems) induced by external
light-fields are characterized by the presence of density
matrix elements which are off-diagonal with respect to the
electronic level index. These matrix elements oscillate with
a frequency comparable to that of the light-wave and we
will shortly comment how to derive for such a situation a
Lindblad-type of dissipation. First we note, that the time
averaging procedure of Section 2.1 to derive the Lindblad-
type of dissipation would fail. There exist different possi-
bilities to overcome this problem. Here, we mention the
approach which is based on the following quasi-Fourier
expansion of the density operator

ρ̂(t) =
∞∑

n=−∞
e−inωLt ρ̂(n)(t). (74)

The frequency ωL is that of the externally applied laser-
pulse, and the expansion coefficients obey the equations
of motion which have to be derived from the original
QME. To do this we take again the dipole approxima-
tion with coupling Hamiltonian −E(t)µ̂ to the radiation
field. The field is assumed to be quasi-monochromatic
E(t) = E(t)n exp(−iωLt) + c.c., with carrier frequency
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ωL and unit vector n of polarization. We use the carrier-
wave expansion of the density operator, and if we order
the complete QME with respect to the carrier-waves we
obtain( ∂
∂t

+ iωL

)
ρ̂(n)(t) = − i

~

(
HS, ρ̂

(n)
)
−
−Dρ̂(n)

+
i
~

(
E(t)

(
(nµ), ρ̂(n−1)

)
− +E∗(t)

(
(nµ), ρ̂(n+1)

)
−

)
.

(75)

This set of equations can be used to repeat the time-
averaging procedure of Section 2.1. Here, we only note
that equation (75) contains the additional approxima-
tion of a field-independent dissipative superoperator. At
higher field-intensities this approximation becomes ques-
tionable [35,37].

5 Conclusions

To describe the dynamic behavior of a single quantum
system feeling the dissipative influence of a certain envi-
ronment the MCWF-method might be the method of the
choice. But based on a very general type of dissipative su-
peroperator it is questionable if this technique gives the
proper single-system description. Therefore, it is useful to
underline the relation of the Lindblad-type of dissipative
superoperator to a concrete model.

One way to get such a relationship has been presented
here by constructing a Lindblad-type of dissipation from
a microscopic system-environment Hamiltonian. And, ac-
cording to this approach the Lindblad-type of dissipation
becomes temperature dependent. The method is general
and can be applied to different systems studied in molec-
ular and chemical physics.

We gratefully acknowledge the support of this work by the
Deutsche Forschungsgemeinschaft through grant Ma 1356/6-2.

Appendix A: The standard quantum master
equation

Changing from equation (8) back to the Schrödinger rep-
resentation gives the standard QME [19–22,36,38,39]

∂

∂t
ρ̂(t) =

i
~
[
HS, ρ̂(t)

]
− −Dρ̂(t) (A.1)

with the dissipative part

−Dρ̂(t) = − i
~

(
∆Hρ̂(t)− ρ̂(t)∆H+

)
−∆Dρ̂(t). (A.2)

There appear non-Hermitian contributions to the Hamil-
tonian

∆H = − i
~
∑
u

KuΛu. (A.3)

Additionally, equation (A.2) includes the so-called sand-
wich term

−∆Dρ̂(t) =
1
~2

∑
u

(
Λuρ̂Ku +Kuρ̂Λ

+
u

)
. (A.4)

The newly introduced operators Λu read

Λu =
∑
v

∞∫
0

dτ Cuv(τ)Kv(−τ). (A.5)

The notation of the dissipative part, equation (A.2) of
the QME is equivalent to the various forms derived in
literature (see e.g. [19–22,31,32]). As it is well-known the
given type of QME comprises among various advantages
the main disadvantage of violating the positivity of the
density matrix.

Appendix B: The dissipative superoperator

The Lindblad-type of dissipation gives respective terms
in the density operator equation which are time-local, i.e.
free of retardation (non-Markovian) effects. If one starts
from the Nakajima-Zwanzig equation an additional ap-
proximation, the Markov-approximation is necessary to
come into contact to the Lindblad-type of dissipation.
However, there exist an alternative approach which is ex-
act but ends up with a time-local dissipative terms in the
density operator equation. This approach is known as the
description resulting in a convolution-less density opera-
tor equation [40]. In the following we shortly discuss what
general types of dissipative superoperator have to be ex-
pected in the convolution-less approach.

To get the convolution-less equation of motion for the
reduced statistical operator one makes use of the for-
mal solution of the Liouville-von Neumann equation es-
tablished for the total statistical operator Ŵ (I)(t) [40].
The statistical operator has been taken in the interac-
tion representation defined with respect to the system-
reservoir coupling and is obtained as U (I)(t, t̄)Ŵ (I)(t̄) from
its earlier value at time t̄. The quantity U (I)(t, t̄) gives
the time-evolution superoperator (in the interaction rep-
resentation). To get the desired equation for the reduced
density operator one follows, in a first step, the derivation
of the Nakajima-Zwanzig equations (see e.g. [22]). Within
this derivation one usually introduces the projection su-
peroperator P = R̂ trR{...} (R̂ is the reservoir equilib-
rium statistical operator) and the orthogonal complement
Q = 1 − P . Using both projectors one can represent the
statistical operator at an earlier time as

Ŵ (I)(t̄) = U (I)+(t, t̄)
(
PŴ (I)(t) +QŴ (I)(t)

)
. (B.1)

Using this relation together with

A(t, t0) =

t∫
t0

dτ U (I)
Q (t, τ)QL(I)

S−R(τ)PU (I)+(t, τ) (B.2)
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where U (I)
Q is obtained from U (I) in replacing the inter-

action Liouvillian L(I)
S−R by QL(I)

S−R one can rewrite the
equation for QŴ (I)(t) as{

1 + iA(t, t0)
}
QŴ (I)(t) = −iA(t, t0)PŴ (I)(t). (B.3)

This equation can be solved with respect to QŴ (I)(t)
and the solution has to be introduced into the equation
for PŴ (I)(t). The latter is reduced to an equation of
motion for the reduced density operator (in the interac-
tion representation). Changing back to the Schrödinger
representation gives the convolution-less equation of
motion for the reduced statistical operator

∂

∂t
ρ̂(t) = − i

~
[HS, ρ̂(t)]− −D(t)ρ̂(t) (B.4)

with the time-dependent dissipative superoperator

D(t) = US(t− t0)

× trR

{
L(I)
S−R(t)

(
1 + iA(t, t0)

)−1A(t, t0)R̂
}
U+

S (t− t0).

(B.5)

The time-evolution operator US is defined via the system
Hamiltonian HS.

Although the particular form of the superoperator
D(t) is known its detailed action is not manageable (if
any approximation should be avoided). According to this
situation it is advisable to carry out some general con-
siderations. Therefore, we write down the action ofD(t) as

−D(t)ρ̂(t) = A(t)ρ̂(t) + ρ̂(t)B(t) +
∑
j

Cj(t)ρ̂(t)Dj(t).

(B.6)

This is the most general form possible for D to act on
ρ̂, where the quantities A(t), B(t), Cj(t), and Dj(t) are
ordinary time-dependent operators. Let us specify these
operators in more detail. The property Dρ̂ = (Dρ̂)+

results in

−D(t)ρ̂(t) = A(t)ρ̂(t) + ρ̂(t)A+(t) +
∑
j

Cj(t)ρ̂(t)C+
j (t),

(B.7)

provided the terms in equation (B.6) are linear inde-
pendent. Next, we use probability conservation which
results in the requirement tr{Dρ̂} = 0. Using the cyclic
invariance of an operator-arrangement to which the trace
operation is applied, and the fact that tr{Dρ̂} = 0 has to
be fulfilled for every basis used for the trace operation we
get

A(t) +A+(t) = −
∑
j

C+
j (t)Cj(t). (B.8)

We may conclude

A(t) = −1
2

∑
j

C+
j (t)Cj(t) + iĥ(t), (B.9)

where ĥ is a Hermitian operator. As a result, the
Lindblad-form, equation (1) is derived, but generalized
here to a form including explicitly time-dependent opera-
tors

−D(t)ρ̂(t) = −1
2

∑
j

(
C+
j (t)Cj(t), ρ̂(t)

)
+
− i
(
ĥ(t), ρ̂(t)

)
−

+
∑
j

Cj(t)ρ̂(t)C+
j (t). (B.10)

If the Cj -operators are time-independent it is known that
this type of dissipation also guarantees the positivity of
the density matrix, namely 〈α|ρ̂(t)|α〉 ≥ 0

There exists an alternative to the solution, equa-
tion (B.10). This becomes obvious if one groups
together pairs of terms Ci(t)ρ̂(t)Di(t) and Cj(t)ρ̂(t)Dj(t)
such that one gets a Hermitian expression like
Cj(t)ρ̂(t)Dj(t) + D+

j (t)ρ̂(t)C+
j (t). Here, we identi-

fied Di(t) = C+
j (t) and Ci(t) = D+

j (t). Instead of
equation (B.8), tr{Dρ̂} = 0 leads to

A(t) +A+(t) = −
∑
j

(
Dj(t)Cj(t) + C+

j (t)D+
j (t)

)
(B.11)

with the solution

A(t) = −
∑
j

Dj(t)Cj(t). (B.12)

The dissipative part of the density matrix equation reads

−D(t)ρ̂(t) = −1
2

∑
j

(
Dj(t)Cj(t)ρ̂(t) + ρ̂(t)C+

j (t)D+
j (t)

+Dj(t)Cj(t) + C+
j (t)D+

j (t)
)
−
. (B.13)

It is just the type of dissipative superoperator one meets
in the standard QME shortly presented in Appendix A.

Appendix C: Nonlinear system-reservoir
coupling

The special type of system-reservoir coupling introduced
in equation (11) has been motivated by a power expan-
sion with respect to the reservoir coordinates Zξ. In the
following we will deal with the quadratic contribution of
this expansion and set

Φu =
∑
ξ

~kξ(u)Z2
ξ . (C.1)

This is not the most general type, but to have not too
complicated formulas we neglected any off-diagonal con-
tributions with respect to the mode-index.

Before determining the respective form of the correla-
tion function, equation (9) we note

〈Φu〉R ≡ trR{R̂eqΦu} =
∑
ξ

~kξ(u)
(
1 + 2n(ωξ)

)
. (C.2)
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In contrast to the expression equation (11) where Φu
depends linearly on the reservoir coordinates, here the
thermal averaged expectation values Φu do not vanish.
In the QME this property leads to the appearance of
the so-called mean-field term −i(〈HS−R〉R, ρ̂)− with
the bracket abbreviating the thermal average over the
reservoir equilibrium-state as in equation (C.2). Addi-
tionally, the correlation function, equation (9) has to be
defined with ∆Φu = Φu − 〈Φu〉R. A somewhat lengthly
but straightforward calculation gives for the correlation
function the formula

Cuv(t) = C(1)
uv (t) + C(2)

uv . (C.3)

The first time-dependent contribution is obtained as

C(1)
uv (t) = 2~2

∫
dω e−iωt

(
1 + n(ω/2)

)2
×
(
Juv(ω) + Juv(−ω)

)
(C.4)

with a spectral density different from equation (12)

Juv(ω) =
∑
ξ

kξ(u)kξ(v)δ(ω − 2ωξ). (C.5)

According to the argument 2ωξ the considered type of
system-reservoir coupling results in relaxation processes
where transitions within the spectrum of the active sys-
tem are accompanied by the emission or absorption of two
reservoir quanta. Nevertheless, this part of the correlation
function, equation (C.3) can be handled as that defined
in equation (13).

For the second, time-independent part of the correla-
tion function, equation (C.3) one obtains

C(2)
uv = 4~2

∫ ∞
0

dω n(ω/2)
(
1 + n(ω/2)

)2Juv(ω). (C.6)

If one changes to the Fourier-transformed correlation func-
tion Cuv(ω) the second part C

(2)
uv would become pro-

portional to δ(ω). This singular frequency dependence
indicates that it cannot be handled within those approx-
imations used in Section 2.1. Instead, the absence of any
time-dependence shows that C

(2)
uv has to be considered

within the non-Markovian version of the QME. In par-
ticular, the considerations of Section 3 leading to the
Lindblad-type of dissipation cannot be applied.
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22. V. May, O. Kühn, Charge and Energy Transfer Dynamics
in Molecular Systems (Wiley-VCH, Berlin, 1999).

23. Femtosecond Chemistry, edited by J. Manz, L. Wöste (Ver-
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